Thermogravimetry study of ion exchange and hydration in layered oxide materials

Oleg Silyukov · Mikhail Chislov · Alena Burovikhina · Tatyana Utkina · Irina Zvereva

CEEC-TAC1 Conference Special Issue © Akadémiai Kiadó, Budapest, Hungary 2012

Abstract The behavior in aqueous solutions of the two types of layered perovskite-like structures, NaLnTiO₄ titanates (Ln = Nd, La) belonging to the family of Ruddlesden–Popper phases and ANdTa₂O₇ tantalates (A = Na, Cs, H) belonging to the family of Dion-Jacobson phases, has been studied by means of thermogravimetric analysis and powder X-ray diffraction. In the case of NaLnTiO₄ compounds, the substitution of protons for sodium cations and the water intercalation into the interlayer space of the crystal structure were observed and proton-containing layered oxides with general formula $H_rNa_{1-r}LnTiO_4 \cdot yH_2O$ (0.63 < x < 1, 0 < y < 0.74) have been obtained. Investigation on the hydration in layered tantalates ANdTa₂O₇ (A = H, Na, Cs) showed that NaNdTa₂O₇ and HNdTa₂O₇ form compounds intercalated by water molecules. Two steps of water intercalation were observed for NaNdTa₂O₇ and HNdTa₂O₇. Stable hydrated compounds HNdTa₂O₇. $0.84H_2O$, NaNdTa₂O₇·0.60H₂O, and NaNdTa₂O₇·1.35H₂O were synthesized.

Keywords Thermogravimetry · Intercalation · Ion exchange · Titanates · Tantalates

Introduction

Complex oxides with perovskite-like crystal structures are of great interest due to their unique properties: high-

O. Silyukov $(\boxtimes) \cdot M.$ Chislov \cdot A. Burovikhina \cdot T. Utkina \cdot I. Zvereva

Department of Chemical Thermodynamics and Kinetics, Saint Petersburg State University, Universitetskiy pr., 26, Saint Petersburg, Russia 198504 e-mail: olegsilyukov@yandex.ru temperature superconductivity, colossal magnetoresistance [1, 2], photocatalytic activity in water decomposition by UV irradiation [3, 4], ionic conductivity [5, 6], ion-exchange properties, ability to the intercalation and interlayer modification [7], etc. Especially, interesting are layered oxides belonging to the Ruddlesden–Popper and Dion–Jacobson phases. These materials are promising catalysts for photoinduced processes of water splitting and degradation of toxic organic compounds in water [8]. Their physico-chemical properties are sensitive to the content and structure of the interlayer space that could be easily modified by the ion-exchange and intercalation reactions.

In contact with water, the interlayer space of alkalicontaining layered oxides can intercalate water molecules. The other possibility is the exchange of metal cations in the interlayer space for protons [9, 10]. Protonated forms of layered perovskite-like oxides appear to be solid acids associated with a number of unique physical and chemical properties. They can also be used as precursors for low temperature ion-exchange reactions [11].

The complex oxides NaLnTiO₄ (Ln = Nd, La) belong to the Ruddlesden–Popper phases. Their structure can be described as stacking of the perovskite-like blocks made up from TiO₆ octahedra and rock salt layers containing Nd³⁺ and Na⁺ ions. There is a complete ordering of Na⁺ and Nd³⁺ cations inside the rock salt layers owing to essential differences in charge (Fig. 1). The Na⁺ cations in the structure of NaLnTiO₄ are bound to the perovskite layers weaker than Nd³⁺ and have a substantial mobility that results in high ionic conductivity and ion-exchange activity of NaLnTiO₄ [12, 13]. The protonated and hydrated Ruddlesden–Popper phases H_xNa_{1-x}LaTiO₄·yH₂O formed by ion-exchange and intercalation reaction have been reported [14]. On the other hand, only a few data were

obtained on the hydration of NaNdTiO₄ oxide with the same tetragonal structure as NaLaTiO₄.

The series of the layered perovskite-like oxides ANd-Ta₂O₇ belong to the Dion–Jacobson phases. Their structure could be described as double layered perovskite-like blocks made up from TaO₆ octahedra with 12-coordinated Nd³⁺ ions between the octahedra and A⁺ ions in the interlayer space. Na⁺, Cs⁺, and H⁺ cations have different ionic radii leading to different stacking shift of perovskite blocks as shown in Fig. 1. The hydration process was investigated for tantalates [3] in connection with their photocatalytic activity. The highest activity was found for Nd-containing compounds but the water intercalation was not described in details as a multistage process similar to the one found for NaLaTa₂O₇ [15] and NaLaNb₂O₇ [16, 17].

In this article, we describe the behavior of the perovskite-like complex titanates NaLnTiO₄ (Ln = Nd, La) and tantalates ANdTa₂O₇ (A = Na, Cs, H) in aqueous solutions. The importance of this study is due, first, to the prospects of using layered oxides as catalysts of processes in aqueous medium, as the stability of a catalyst is an important characteristic that determines the possibility of its application to a particular catalytic system, and second, to the possibility of using protonated forms as precursors to obtain new compounds by soft-chemical reactions. The investigation of the intercalation was carried out using thermogravimetry (TG) of water desorption as main method for the mass analysis of intercalated compounds [18–20].

Experimental

Layered oxides NaLnTiO₄ (Ln = Nd, La) and CsNdTa₂O₇ were prepared by conventional solid state reaction in air at atmospheric pressure using as reagents carbonates (Na₂CO₃

and Cs₂CO₃, 99.9%), and oxides (La₂O₃, Nd₂O₃, TiO₂, and Ta₂O₅, 99.95%) of the corresponding metals. Stoichiometric amounts of oxides with 40% excess of sodium carbonate and 50% excess of cesium carbonate (both evaporate at the high temperature of synthesis) were ground in an agate mortar, pelletized by pressure 100 kg/cm² and heated in an alumina crucible. For the NaLnTiO₄ series heating was carried out at 850 °C for 10 h according to the results of the investigation of the formation and thermal stability of NaNdTiO₄ [20, 21]. CsNdTa₂O₇ was obtained by heating at 850 °C for 10 h followed by regrinding and heating at 1,100 °C for additional 10 h.

NaNdTa₂O₇ was prepared by the ion-exchange reaction of CsNdTa₂O₇ with NaNO₃. Ground CsNdTa₂O₇ powder was added to molten NaNO₃ (reagents ratio was 1:50) and stirred up with magnetic stirrer at 360 °C for 10 h. The solid mixture obtained after cooling was washed with distilled water. Protonated compounds HNdTa₂O₇ and HLnTiO₄ were prepared by ion exchange with excess of 0.1H HCl solution. For this purpose, initial Na-containing oxides were ground, suspended in HCl solution, and stirred up at 25 °C for 24 h, then the as-prepared H-containing phases were filtered, washed with distilled water, and dried at room temperature under CaCl₂.

To achieve a complete intercalation/ion exchange each prepared complex oxide (1 g) was ground and dispersed in 100 mL of distilled water by a magnetic stirrer for 7 days. In the case of NaLnTiO₄ samples, various amounts of hydrochloric acid were added to investigate the behavior of the oxide exposed in solutions with different pH values.

Combination of TG and powder X-ray diffraction analysis (XRD) was used for the investigation of hydration and ion-exchange phenomena. TG analysis was made using a NETZSCH TG209 F1 Iris microbalance with heating rate 2-10 K min⁻¹. Differential thermal analysis was performed using a Thermoscan-1 Analytpribor with the same program of recording. The amount of water intercalated and the degree of ion exchange were estimated using the procedure previously described [22]. The pH value and Na⁺ ion concentration were determined using IPL-103 ionmeter. The crystal structure was identified with a powder ARL X'TRA diffractometer (Cu K α radiation, 35 mA– 45 kV). Parameters of the unit cells have been calculated using the GSAS software. Scanning electron microscopy (SEM) was performed on a Carl Zeiss EVO 40EP microscope.

Fig. 2 TG curves and XRD patterns of NaLaTiO₄ derivatives

Results and discussion

$NaLnTiO_4$ (Ln = Nd, La)

The NaLnTiO₄ water suspensions were found to have an alkaline reaction, which corresponds to nearly 50% substitution of H⁺ for Na⁺ ions resulting in the formation of H_xNa_{1-x}LnTiO₄·yH₂O solid solutions. The degree of proton substitution for sodium cations was determined with a higher accuracy using the results of TG (Figs. 2a, 3a). For

patterns of NaNdTiO₄ derivatives

Fig. 3 TG curves and XRD

Table 1 $H_xNa_{1-x}LnTiO_4 \cdot yH_2O$ samples composition and unit cells parameters

HCl equivalents added	Solution pH	Chemical composition	Space group	a/Å	c/Å
		HLaTiO ₄	P4/nmm	3.72	12.29
1	5.5	H _{0.99} Na _{0.01} LaTiO ₄ ·0.06H ₂ O	P4/nmm	3.72	12.35
0.8	6.4	H _{0.97} Na _{0.03} LaTiO ₄ ·0.32H ₂ O	P4/nmm	3.74	12.93
0.6	9.5	H _{0.71} Na _{0.29} LaTiO ₄ ·0.69H ₂ O	I4/mmm	3.75	28.12
0.4	11.4	H _{0.77} Na _{0.23} LaTiO ₄ ·0.62H ₂ O	I4/mmm	3.75	28.12
0.2	11.5	H _{0.63} Na _{0.37} LaTiO ₄ ·0.74H ₂ O	I4/mmm	3.76	28.14
0	11.9	H _{0.71} Na _{0.29} LaTiO ₄ ·0.63H ₂ O	I4/mmm	3.75	28.13
-	_	NaLaTiO ₄	P4/nmm	3.74	12.94
2		HNdTiO ₄	P4/nmm	3.70	12.26
1	5.6	$H_{0.99}Na_{0.01}NdTiO_4 \cdot 0.06H_2O$	P4/nmm	3.71	12.53
0.8	6.3	$H_{0.85}Na_{0.15}NdTiO_4 \cdot 0.21H_2O$	P4/nmm	3.72	12.96
0.6	9.7	$H_{0.66}Na_{0.34}NdTiO_4 \cdot 0.43H_2O$	I4/mmm	3.74	27.81
0.4	11.2	$H_{0.70}Na_{0.30}NdTiO_4 \cdot 0.47H_2O$	I4/mmm	3.74	27.82
0.2	11.5	$H_{0.64}Na_{0.36}NdTiO_4 \cdot 0.43H_2O$	I4/mmm	3.74	27.81
0	11.8	$H_{0.73}Na_{0.27}NdTiO_4 \cdot 0.30H_2O$	I4/mmm	3.74	27.68
-	-	NaNdTiO ₄	P4/nmm	3.78	13.01

both La- and Nd-containing substances the weight loss occurs in two steps. We ascribed the weight loss in the 70–130 °C range to the release of the intercalated water in the interlayer space of the NaLnTiO₄ oxide crystal structure. The second weight loss at temperatures higher than 200 °C corresponds to the decomposition of the substituted compound, as this temperature range coincides with the decomposition temperature of the completely protonated HLnTiO₄ oxides (Figs. 2a, 3a). Accordingly, differential thermal analysis shows an exothermic effect at the beginning of second mass loss step that is generally typical for the decomposition processes.

x, the degree of substitution and *y* the amount of intercalated water, as calculated from the TG data for H_xNa_{1-} _{*x*}LnTiO₄·*y*H₂O exposed in water and acid solutions are presented in Table 1.

The analysis of the substitution degree values and the amount of intercalated water in NaLnTiO₄ (Table 1) indicates that on adding not more than 0.6 equivalent of HCl to

Fig. 4 TG curves of ANdTa₂O₇ (A = H, Na, Cs)

Table 2 Unit cell parameters of oxides exposed in water

Oxide	Space group	a/Å	c/Å
HNdTa ₂ O ₇ · <i>x</i> H ₂ O	P4/m	3.87	11.71
NaNdTa ₂ O ₇ · <i>x</i> H ₂ O	I4/m 2/m 2/m	3.86	25.64
CsNdTa ₂ O ₇	P4/mmm	3.90	11.29

Fig. 5 TG curve and XRD patterns of NaNdTa₂O₇·1.35H₂O

a suspension (pH > 9.5) the amount of intercalated water and the degree of substitution in $H_x Na_{1-x} LnTiO_4 \cdot yH_2O$ are almost the same. In more acidic solutions, a significant decrease in the amount of intercalated water is observed simultaneously with an increase of the substitution degree.

The (XRD) data show (Figs. 2b, 3b) the identity of the X-ray patterns of samples obtained on adding 0–0.6 equivalent of HCl to the NaLnTiO₄ suspension. All hydrated compounds with 0.43 < y < 0.74 crystallize in the *I4/mmm* space group (Table 1). The increase of the *c* parameter in H_xNa_{1-x}LnTiO₄·yH₂O as compared to the starting NaLnTiO₄ points to a widening of the interlayer space due to the intercalation of water molecules. This assumption was checked by preparing H_xNa_{1-x}LnTiO₄·yH₂O hydrated samples by heating the H_xNa_{1-x}LnTiO₄·yH₂O hydrated ones at 150 °C for 1.5 h. Resulting *c* parameters are close to that of the initial NaLnTiO₄.

As to the samples obtained in more acidic solutions (0.8-1 equivalents of HCl added, pH < 9) the $H_x Na_{1-} xLnTiO_4 \cdot yH_2O$ phases crystallize in *P4/nmm* space group. The unit cell parameter *c* decreases indicating a compression of the interlayer space as the degree of H⁺ substitution for Na⁺ increases. The X-ray pattern of the sample in the most acidic solution under study (equivalent amounts of acid and oxide) almost completely coincides with the X-ray pattern of the fully substituted anhydrous HLnTiO₄. Therefore, in the acid medium a fully substituted HNdTiO₄ compound is nearly completely free from intercalated water that is proved by the evidence of no weight loss along the heating up to 250 °C.

SEM had demonstrated that the ion exchange of H^+ for Na⁺ and the intercalation processes do not result in a change of the particles size and morphology.

Table 3 Temperature range of existence, composition, and unit cells parameters of $NaNdTa_2O_7$ · xH_2O

Temperature/°C	Composition	a/Å	c/Å
<65	NaNdTa ₂ O ₇ ·1.35H ₂ O	3.86	25.64
105-125	NaNdTa2O7.0.60H2O	3.85	22.37
>165	NaNdTa ₂ O ₇	3.87	21.02

Fig. 6 TG/DTG curves and XRD patterns of HNdTa₂O₇·0.84H₂O

 $ANdTa_2O_7 (A = H, Na, Cs)$

TG curves of complex oxides ANdTa₂O₇ exposed in water are presented in the Fig. 4. One can see that CsNdTa₂O₇ is stable upon heating; NaNdTa₂O₇ and HNdTa₂O₇ lose mass during the heating. Parameters of the ANdTa₂O₇ unit cells (M = H, Na, Cs) exposed in water are presented in Table 2. The increase of distance between the layers in the row Na > H>Cs which is strongly connected with the *c* parameter for HNdTa₂O₇ and CsNdTa₂O₇ (1/2*c* for NaNdTa₂O₇) could be affected by the intercalation of water molecules in the interlayer space.

TG curve of NaNdTa₂O₇ has two steps of weight loss (Fig. 5). It was found that NaNdTa₂O₇ intercalates 1.35 mol of water per mole of the anhydrous compound. The partially intercalated sample has a composition that could be described by the formula NaNdTa₂O₇ \cdot 0.6H₂O. A multistage weight loss during TG was reported earlier for the isostructural oxides NaLaNb₂O₇ \cdot 1.6H₂O [15, 16] and NaLaTa₂O₇ \cdot 1.9H₂O [17] but intermediate compounds have never been isolated and characterized.

For the detailed investigation of multistage processes XRD analysis was performed following the end of each step of weight loss on the TG curve. XRD patterns of intercalated NaNdTa₂O₇·xH₂O heated to the temperatures 100, 170 °C are presented in the Fig. 4; cell parameters of the stable forms and their chemical composition are presented in Table 3.

Weight loss of HNdTa₂O₇ is divided into four stages (Fig. 6). First of them (30–75 °C) refers to the dehydration of surface water. Three steps of weight loss could be observed in the temperature interval 75–515 °C. The weight loss in the temperature interval 300–515 °C is well described by the following reaction:

Table 4 Temperature range of existence, composition, and unit cells parameters of $HNdTa_2O_7\cdot xH_2O$

Temperature/°C	Composition	a/Å	c/Å
<75	HNdTa ₂ O ₇ ·0.84H ₂ O	3.87	11.71
160	HNdTa2O7.0.40H2O	3.87	10.69
315	HNdTa ₂ O ₇	3.86	10.48

 $HNdTa_2O_7 \rightarrow NdTa_2O_{6.5} + 0.5H_2O.$

The other two steps on TG curve are related to the deintercalation of water molecules from the interlayer space. Parameters of the unit cell and chemical composition of intermediate compounds are given in the Table 4. XRD patterns for the initial proton-containing compound HNdTa₂O₇ and its decomposition product NdTa₂O_{6.5} are nearly the same (Fig. 6). A similar result was obtained previously for the isostructural oxide HLaNb₂O₇ [5, 23].

Both NaNdTa₂O₇·1.35H₂O and HNdTa₂O₇·0.84H₂O have two temperature intervals of intercalated water elimination. It was found that regarding the exchange of H⁺ for the alkali cation when exposed in water, CsNdTa₂O₇ and NaNdTa₂O₇ are stable. Similarly to titanates, SEM data demonstrated that ion exchange and intercalation/deintercalation processes do not result in change of the particle size and morphology.

Conclusions

Instability of the layered NaLnTiO₄ (Ln = Nd, La) oxides in aqueous solutions was found. Due to ion exchange of protons for sodium cations in the crystal structure of NaLnTiO₄, layered proton-containing oxides HLnTiO₄ form in the acidic medium, while a series of H_xNa₁₋ _xLnTiO₄·yH₂O compounds are formed in the neutral and alkali medium. The dehydration process of partially substituted compounds H_xNa_{1-x}LnTiO₄·H₂O occurs in two stages. The first one in the 70–130 °C range is the release of the water intercalated in the interlayer space, and the second one at temperatures higher than 200 °C is the decomposition of the protonated compounds.

NaNdTa₂O₇ and HNdTa₂O₇ intercalate water into the interlayer space. Molecular formulae of fully intercalated compounds are NaNdTa₂O₇·1.35H₂O and HNdTa₂O₇·0.84H₂O. Deintercalation process takes place during heating and has two steps in the different temperature intervals for both compounds.

The two types of layered perovskite-like structures under study show a different behavior during the water exposure. While Ruddlesden–Popper phases NaLnTiO₄ (Ln = Nd, La) oxides undergo an ion exchange of H^+ for Na⁺ conjugated with water intercalation, the Dion–Jacobson phase NaNdTa₂O₇ is stable to ion exchange and form only water intercalates with formulae NaNdTa₂O₇·0.6H₂O and NaNdTa₂O₇·1.35H₂O.

Acknowledgements This study was supported by the Russian Foundation for Basic Research (Grant 09-03-00853) and Saint-Petersburg State University research grant (N 12.0.105.2010).

References

- MacChesney JB, Potter JF, Sherwood RC. Chemical and magnetic study of layered strontium lanthanum manganate structures. J Appl Phys. 1969;40:1243.
- Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature. 1996;380:141.
- 3. Mashida M, Miyazaki K, Matsushima S, Arai M. Photocatalytic properties of layered perovskite tantalates, $MLnTa_2O_7$ (M = Cs, Rb, Na, and H; Ln = La, Pr, Nd, and Sm). J Mater Chem. 2003;13:1433–7.
- Mashida M, Yabunaka J, Kijima T. Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa₂O₇ (Ln = La, Pr, Nd, and Sm). Chem Mater. 2000;12:812–7.
- Palacin MR, Lira M, Garcia JL, Caldes MT, Casan-Pastor N, Fuertes A, Gomez-Romero P. Synthesis deintercalation and transport properties of a mixed-valence derivative of the layered oxide HlaNb₂O₇. Mater Res Bull. 1996;31:217–25.
- Kobayashi Y, Schottenfeld JA, Macdonald DD, Mallouk TE. Structural effects in the protonic/electronic conductivity of Dion– Jacobson phase niobate and tantalate layered perovskites. J Phys Chem. 2007;111:3185–91.
- Shangguan W, Zhang M, Yuan J, Gu M. Synthesis and interlayer modification of RbLaTa₂O₇. Sol Energy Mater Sol Cells. 2003; 76:201–4.
- Maeda K, Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C. 2011. doi:10.1016/j.jphotochemrev.2011.07.001.
- 9. Chleich D. Chimie douce: low temperature techniques for synthesizing useful compounds. Solid State Ion. 1994;70:407.

- Gopalakrishnan J, Sivakumar T, Ramesha K, Thangadurai V, Subbanna G. Transformations of Ruddlesden–Popper oxides to new layered perovskite oxides by metathesis reactions. J Am Chem Soc. 2000;122:6237.
- Schaak RE, Mallouk TE. KLnTiO₄ (Ln = La, Nd, Sm, Eu, Gd, Dy): a new series of Ruddlesden–Popper phases synthesized by ion-exchange of HLnTiO₄. J Solid State Chem. 2001;161:225.
- 12. Toda K, Kurita S, Sato MJ. Crystal structure determination and ionic conductivity of layered perovskite compounds $NaLnTiO_4$ (Ln = rare earth). Ceram Soc Jpn. 1996;104:140.
- Byeon S-H, Park K, Itoh MJ. Structure and ionic conductivity of NaLnTiO₄; comparison with those of Na₂Ln₂Ti₃O₁₀ (Ln = La, Nd, Sm, and Gd). Solid State Chem. 1996;121:430.
- Shunsuke N, Motohide M, Michihiro M. Novel protonated and hydrated n j 1 Ruddlesden–Popper phases, H_xNa_{1-x}LaTiO₄– yH₂O, formed by ion-exchange/intercalation reaction. J Solid State Chem. 2005;178:811–8.
- Sato K, Jin T, Uematsu K. Proton conduction of MLaNb₂O₇ (M = K, Na, H) with a layered perovskite structure. J Solid State Chem. 1993;102:557–61.
- Sato M, Abo J, Jin T. Structure examination of NaLaNb₂O₇ synthesized by soft chemistry. Solid State Ion. 1992;57:285–93.
- Toda K, Uematsu K, Sato M. Structure determination of new layered perovskite compound, NaLaTa₂O₇, synthesized by ionexchange reaction. J Ceram Soc Jpn. 1997;105:482–5.
- Lapides I, Borisover M, Yariv S. Thermal analysis of hexadecyltrimethylammonium-montmorillonites. Part 2. Thermo-XRD-spectroscopy-analysis. J Therm Anal Calorim. 2011;105: 39–51.
- Grand L-M, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim. 2010;100:981–5.
- Zvereva I, Silyukov O, Markelov A, Missyul' A, Chislov M, Rodionov I, Liu D. Formation of the complex oxide NaNdTiO₄. Glass Phys Chem. 2008;34:749–55.
- Zvereva I, Sankovich A, Missyul' A. Thermal stability of layered perovskite-like oxides NaNdTiO₄ and Na₂Nd₂Ti₃O₁₀. Russ J Gen Chem. 2010;80:1242–8.
- Zvereva I, Silyukov O, Chislov M. Ion-reactions in the structure of perovskite-like layered oxides: I. Protonation of NaNdTiO₄ complex oxide. Russ J Gen Chem. 2011;81:1434–41.
- Hermann AT, Wiley JB. Thermal stability of Dion–Jacobson mixed-metal-niobate double-layered perovskites. Mater Res Bull. 2009;44:1046–50.